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We show that with respect to a certain class of norms the so called
shortest lattice vector problem is polynomial-time Turing (Cook)
reducible to the nearest lattice vector problem. This gives a little
more insight in the relationship of these two fundamental problems
in the computational geometry of numbers.
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1 Introduction

Throughout this paper let Rn be the real n-dimensional vector space equipped
with a norm fK(·), where K is the gauge-body of the norm, i.e.

K = {x ∈ Rn : fK(x) ≤ 1}.

K is a centrally symmetric convex body with nonempty interior and fK(·) is
also called the distance function of K because fK(x) = min{ρ ∈ R≥0 : x ∈
ρK}. The Euclidean norm is denoted by fB(·), where B is the n-dimensional
unit ball, and the associated inner product is denoted by 〈·, ·〉. Finally, we
denote by C the cube with edge length 2 and center 0, and thus fC(·) denotes
the maximum norm. As usual we denote by dxe the smallest integer not less
than x ∈ R.

Let b1, . . . , bn ∈ Qn be n linearly independent vectors. The set

Λ =

{
x ∈ Qn : x =

n∑
i=1

zib
i, zi ∈ Z, 1 ≤ i ≤ n

}
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is called the lattice generated by the basis b1, . . . , bn.

Now, the shortest lattice vector problem with respect to a norm fK(·) –
SVPK— is the following task (cf. [5]):

SVPK: Let Λ ⊂ Qn be a lattice given by a basis b1, . . . , bn. Find a lat-
tice vector b ∈ Λ\{0} with minimal distance to 0, i.e. fK(b) =
min{fK(w) : w ∈ Λ\{0}}.

The length of a shortest nonzero vector of a lattice Λ with respect to a norm
fK(·) is denoted by λK(Λ).

The nearest vector problem with respect to the norm fK(·) — NVPK — is in
a certain sense the inhomogeneous counterpart to SVPK :

NVPK: Let Λ ⊂ Qn be a lattice given by a basis b1, . . . , bn and let
v ∈ Qn. Find a lattice vector c ∈ Λ with minimal distance to
v, i.e. fK(c− v) = min{fK(w − v) : w ∈ Λ}.

Observe that in the SVPK we are looking for a nonzero lattice vector, whereas
in the NVPK the zero vector is a solution for all sufficiently small vectors v.
Geometrically speaking the NVPK is the task to find a lattice point c such
that the given point v is contained in the honeycomb c+HK(Λ), where HK(Λ)
is given by:

HK(Λ) = {x ∈ Rn : fK(x) ≤ fK(x− w), ∀w ∈ Λ}.

HK(Λ) is a centrally symmetric ray set, i.e. if x ∈ HK(Λ), then ρx ∈ HK(Λ)
for all ρ with −1 ≤ ρ ≤ 1. In the Euclidean case, but not in general, HK(Λ) is a
convex set. Moreover, it is easy to see that the inradius of HK(Λ) with respect
to fK(·) is one half of the length of a shortest lattice vector. Analogously, the
circumradius µK(Λ) of a honeycomb is equal to the so called inhomogeneous
minimum of Λ and fK(·) (cf. [6]), which is defined as the maximal distance of
a point to the lattice, i.e. µK(Λ) = maxy∈Rn minw∈Λ fK(w− y) = max{fK(x) :
x ∈ HK(Λ)}. Thus

λK(Λ)

2
K ⊆ HK(Λ) ⊆ µK(Λ)K. (1)

It is known that the nearest vector problem is NP-hard for the norms fB(·)
and fC(·), see van Emde Boas [3] and Kannan [7]. Probably the shortest
vector problem is also NP-hard, but up to now this has only been established
with respect to the maximum norm (cf. [3]). The purpose of this note is to
prove that for a certain class of norms SVPK is not harder than NVPK :
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Theorem 1.1 Let Λ ⊂ Qn be a lattice given by a basis b1, . . . , bn and let fK(·)
be a norm with the property that

fC(x) ≤ fK(x) ≤ fB(x), x ∈ Rn. (2)

With polynomially many calls to a subroutine solving NVPK and polynomial
additional time we can solve SVPK.

At a first sight this class of norms appears to very special, but for example all
p-norms |x|p = (

∑n
i=1 |xi|p)1/p are part of this class for p ≥ 2.

We assume that the function fK(·) is computable in polynomial time. The
input size of our problem is given by the input size of the vectors b1, . . . , bn.
For detailed information about complexity and numerical computation we
refer to the book [5] and for notation concerning lattices we refer to [6].

Finally, we note that (2) is equivalent to B ⊆ K ⊆ C, and thus implies that

1√
n

fB(x) ≤ fK(x) ≤ fB(x), (3)

fK(ei) = 1, 1 ≤ i ≤ n, (4)

where ei denotes the i-th unit vector.

2 Proof of Theorem 1.1

Now we state an algorithm which reduces the problem SVPK to NVPK . Since
the algorithm works inductively the input is given by an m-dimensional lattice
Λ embedded in Rn, where we assume m > 1. Otherwise it is trivial to compute
a shortest nonzero lattice vector. The linear hull of Λ is denoted by lin(Λ).

Procedure SVPK by NVPK :

Input: An m-dimensional lattice Λ generated by the basis b1 . . . , bm ∈ Qn

and a norm fK(·) on Rn such that (2) is satisfied.

Output: A shortest nonzero vector b of the lattice Λ with respect to fK(·).

(i) With respect to the Euclidean norm find an “almost” shortest nonzero
lattice vector b∗ in the polar lattice

Λ∗ = {z ∈ lin(Λ) : 〈z, w〉 ∈ Z, ∀w ∈ Λ}

3



of Λ by calls of the subroutine NVPK , i.e. find a primitive vector b∗ ∈ Λ∗

such that

λB(Λ∗) ≥ fB(b∗)

2n
. (5)

(ii) Find a basis b̄1, . . . , b̄m of Λ such that

〈b̄i, b∗〉 = 0, 1 ≤ i ≤ m− 1, and 〈b̄m, b∗〉 = 1. (6)

(iii) Let Hi = {x ∈ lin(Λ) : 〈b∗, x〉 = i}, i ∈ Z. For 1 ≤ i ≤
⌈
2n3/2 ·m

⌉
find a shortest lattice vector um,i in the affine hyperplane Hi using the
subroutine NVPK .

(iv) Let um be a lattice vector of minimal length among the vectors um,i.
(v) Find a shortest lattice vector um−1 in the plane H0 by applying the proce-

dure SVPK by NVPK to the (m−1)-dimensional lattice Λm−1 generated
by the vectors b̄1, . . . , b̄m−1 and the norm fK(·).

(vi) Let b be the shorter one of um and um−1. Then fK(b) = λK(Λ).

Proof of Theorem 1.1 Without loss of generality we may assume Λ ⊆ Zn.
First we prove the correctness of the algorithm. Obviously, a shortest lattice
vector of Λ is contained in ∪∞i=0Hi. It remains to show that it suffices to consider

the planes Hi, 0 ≤ i ≤
⌈
2n3/2m

⌉
. By a result of Banaszczyk [1] (see also

Bourgain & Milman [2]) we have λB(Λ) · λB(Λ∗) ≤ m. Since B ⊆ K by
(2) we have λB(Λ) ≥ λK(Λ) and thus

λK(Λ) ≤ m

λB(Λ∗)
.

On account of (5) we obtain

λK(Λ) ≤ 2n ·m
fB(b∗)

. (7)

On the other hand we have for each vector y ∈ Hi that fB(y) ≥ i/fB(b∗) and
so (cf. (3))

fK(y) ≥ i√
nfB(b∗)

.

Hence for i >
⌈
2n3/2 ·m

⌉
the length of a shortest lattice vector in a plane Hi

is greater than λK(Λ).

In the sequel we show how the single steps of the algorithm can be done.
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Step (i):

Let bm+1, . . . , bn be an orthogonal basis of the orthogonal complement of
lin(Λ). Such a basis can be found in polynomial time via the Gram-Schmidt
orthogonalization (cf. [5]). Let B be the matrix with columns b1, . . . , bn. Then
the first m columns of the matrix (BT )−1 form a basis of Λ∗. Let the columns
of (BT )−1 be denoted by b1∗ , . . . , bn∗ and let Λ̃∗ be the n-dimensional lattice
generated by b1∗ , . . . , bm∗ , σbm+1∗ , . . . , σbn∗ with

σ =

⌈
2n

min{fB(bj∗) : m + 1 ≤ j ≤ n}
fB(b1∗)

⌉
+ 1 (8)

In what follows we construct a vector b∗ ∈ Λ̃∗\{0} such that (5) holds with
Λ̃∗ instead of Λ∗, i.e.

λB(Λ̃∗) ≥ fB(b∗)

2n
. (9)

Then by the choice of σ we will see that b∗ belongs to Λ∗ and thus the vector
satisfies (5).

Since the parallelepiped P ∗ spanned by b1∗ , . . . , bm∗ , σbm+1∗ , . . . , σbn∗ generates
a lattice tiling with respect to Λ̃∗ the width ω(P ∗) of P ∗ is a lower bound for
λB(Λ̃∗). Now

ω(P ∗) = min
{
1/fB(b1), . . . , 1/fB(bm), σ/fB(bm+1), . . . , σ/fB(bn)

}

and so

λB(Λ̃∗) ≥ ω(P ) ≥ γ := min

{
1

dfB(bi)e
, 1 ≤ i ≤ n

}
.

With ν0 = γ/ d2
√

n e we obtain for 1 ≤ i ≤ n (cf. (4))

fK(ν0e
i) = ν0 ≤

λB(Λ̃∗)

2
√

n
≤ λK(Λ̃∗)

2
. (10)

Thus the vectors ν0e
i belong to the honeycomb HK(Λ̃∗) (cf. (1)) and the

origin is the unique nearest lattice vector to ν0e
i. Moreover for ν1 =

∑m
i=1

dfB(bi∗)e+
∑n

i=m+1 dfB(σbi∗)e we obtain (cf. [6])

fK(ν1ei) = ν1 >
1

2

 m∑
i=1

fK(bi∗) +
n∑

i=m+1

fK(σbi∗)

 ≥ µK(Λ̃∗). (11)
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Hence the vectors ν1e
i are not contained in HK(Λ̃∗). On account of (1) and

since HK(Λ̃∗) is a ray set the output of the subroutine NVPK with input Λ
and νei is a nonzero lattice vector for ν ≥ ν1. So by applying the subroutine
NVPK to the sequence of points 2kν0e

i, k = 0, . . ., we can find after at most
dlog2(ν1)− log2(ν0)e calls of NVPK a positive scalar εi with ν0 ≤ εi ≤ ν1 and
a nonzero lattice vector vi∗ such that

εie
i ∈ HK(Λ̃∗) and 2εie

i ∈ vi∗ + HK(Λ̃∗).

The last relation implies fK(2εie
i − vi∗) ≤ fK(2εie

i) and thus fK(vi∗) ≤ 4εi.
Now let εk = min{εi : 1 ≤ i ≤ n} and let b∗ = vk∗ . In the sequel we show that
b∗ satisfies (9). For abbreviation we write ε instead of εk. On account of (3)
we get

fB(b∗) ≤ 4ε
√

n. (12)

HK(Λ̃∗) is a centrally symmetric ray set and thus ±ε · ei ∈ HK(Λ̃∗). Hence
(cf. (4))

fB(εei) = ε = fK(εei) ≤ fK(εei − u∗) ≤ fB(εei − u∗) (13)

for all lattice vectors u∗ ∈ Λ̃∗. That means that the vectors ±εei, 1 ≤ i ≤ n,
are contained in the honeycomb HB(Λ̃∗) which is a convex set. So the width
of the cross polytope with vertices ±ε · ei is a lower bound for λB(Λ̃∗):

λB(Λ̃∗) ≥ 2ε√
n

.

Together with (12) we obtain

λB(Λ̃∗) ≥ fB(b∗)

2n
.

Now suppose b∗ /∈ Λ∗. Then by the definition of Λ̃∗ and σ we have

fB(b∗) ≥ σ min{fB(bj∗) : l + 1 ≤ j ≤ n} > 2nfB(b1∗) ≥ 2n · λB(Λ̃∗)

which contradicts the choice of b∗. Obviously, we may assume that b∗ is prim-
itive.

Step (ii):
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In order to find a basis of Λ such that (6) is satisfied we first construct a
basis b̄1∗ , . . . , b̄m∗ of Λ∗ containing b∗. Furthermore, without loss of generality
we may assume that the matrix M with columns b∗, b2∗ , . . . , bm∗ has rank m.
Let A be the integer (m×m)-matrix such that M = B∗ · A, where B∗ is the
matrix with columns b1∗ , . . . , bm∗ . It is well known that the Hermite normal
form of a A can be computed in polynomial time (cf. [4], [8] or [10]) and thus
we can find an unimodular matrix U and an integer upper triangle matrix T
with A = U ·T . Hence M = (B∗ ·U) ·T and the columns b̄1∗ , . . . , b̄m∗ of B∗ ·U
form a basis of Λ∗. Since b∗ is primitive b∗ is the first column vector of B∗ ·U .
Now, let bm+1∗ , . . . , bn∗ be an orthogonal basis of the orthogonal complement
of lin(Λ) and B̄∗ be the matrix with columns b̄1∗ , . . . , b̄m∗ , bm+1∗ , . . . , bn∗ . Then
the first m columns of (B̄T )−1 form a basis of Λ such that (6) is satisfied.

Step (iii):

Obviously, Hi ∩ Λ = {x ∈ Λ : x =
∑m−1

j=1 zj b̄
j + ib̄m}. Hence, for i ≥ 1 the

shortest vector problem in the plane Hi is the task to find a lattice vector of
Λm−1 which is nearest to −ib̄m. That can be done by applying the procedure
NVPK to the input vector −ibm and a suitable n-dimensional lattice Λ̂. For
example, let gm, . . . , gn be an orthogonal basis of the orthogonal complement
of lin(Λm−1) and let

χ = d2
√

n ed2n3/2 ·me
⌈

fB(bm)

min{fB(gj) : m ≤ j ≤ n}

⌉
+ 1

We claim that a nearest lattice vector of the lattice Λ̂ generated by b̄1, . . . ,
b̄m−1, χgm, . . . , χgn to −ibm belongs to Λm−1. Suppose the opposite and let
z1b

1 + · · ·+zm−1b
m−1 +zmχgm + · · ·+znχgn be a nearest lattice vector to −ibn

with some zj 6= 0, say zn, for m ≤ j ≤ n. Then fK(z1b
1 + · · · + zm−1b

m−1 +
zmχgm + · · ·+ znχgn − ibl) ≤ ifK(bm) and on account of (3) we get

|zn|χfB(gn)√
n

− ifK(bm)

≤ fB(z1b
1 + · · ·+ zm−1b

m−1 + zmχgm + · · ·+ znχgn)√
n

− ifK(bm)

≤ fK(z1b
1 + · · ·+ zm−1b

m−1 + zmχgm + · · ·+ znχgn − ibm) ≤ ifK(bm).

It follows χ ≤ 2
√

nifB(bm)/fB(gn) ≤ d2
√

ned2n3/2 ·me · fB(bm)/fB(gn) which
contradicts the choice of χ.

To analyze the encoding length of the numbers arising in the procedure let
〈A〉 be the input size of the algorithm and let Λi be the i-dimensional lattice
constructed in the (m− i)-th call of the procedure SVPK by NVPK . Further-
more, let b∗i be the “almost” shortest lattice vector of the appropriate dual
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lattices Λ∗i constructed in step (i). Then det(Λj−1) = det(Λj)fB(b∗j) and by
(5) and Minkowski’s convex body theorem (cf. [5])

det(Λj−1) = det(Λj)fB(b∗j) ≤ det(Λj)2nλB(Λ∗j)

≤ det(Λj)2n
√

j det(Λ∗j)1/j ≤ det(Λj)2n ·
√

j.

So det(Λj−1) < det(Λm)(2n)2m. Before we call the procedure SVPK by NVPK

we can make an LLL-reduction and obtain a basis c1, . . . , cj ∈ Zn of Λj with
(cf. [5])

fB(c1) · · · fB(cj) ≤ 2j2

det(Λj).

Hence, for each vector cj we have the bound

fB(cj) ≤ 2m2

(2n)2m det(Λm).

This implies that we can always find a basis of the lattice Λj whose input
size is bounded by O(〈A〉3). Finally, it is easy to check that the numbers
arising in the steps (i)–(iv) of the procedure SVPK by NVPK are bounded
by a polynomial in the input size of the given basis at the beginning of the
execution of the steps (i)–(iv) (cf. [5]).

3 Remarks

The crucial point for the special choice of the norms given by (2) is relation
(13). For example, if fK(·) is the 1-norm, i.e., K is the cross polytope with
edge length

√
2 then, in general, it is not true that fK(εei−u∗) ≤ fB(εei−u∗).

Hence we do not know whether ±εei, 1 ≤ i ≤ n, are contained in HB(Λ̃∗) and
we can not show that b∗ is an “almost” shortest lattice vector as required in
step (i) (cf. proof of Theorem 1.1). On the other hand if K is an arbitrary
centrally symmetric convex body and if we have oracles solving NVPK and
NVPB, then SVPK can be solved in oracle polynomial time, because by the
subroutine solving NVPB we can easily find such an “almost” shortest lattice
vector. However, we believe that SVPK is polynomial reducible to NVPK at
least for any p-norm.

The above algorithm works also for any norm fK̄(·) for which an affine trans-
formation L exists such that B ⊂ LK̄ ⊂ C because fLK̄(x) = fK̄(L−1x).

Finally, we remark that in the Euclidean case the problem to find a Korkin-
Zolotarev reduced basis of a lattice is polynomial reducible to the shortest
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lattice vector problem SVPB (cf. [9]). By Theorem 1.1 we obtain that this
problem can also be reduced to NVPB in polynomial time.
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